Dr. Frank Trixler LMU München nano.geo.uni-muenchen.de

Natural Nanofluidic Environments as Prebiotic Reaction Vessels

Abiotic RNA formation in temporal nanoconfined water

Background

The water paradox in prebiotic chemistry:

Water is essential to biochemical reactions,

but also inhibitive to key prebiotic chemical reactions such as RNA synthesis

Aim of this talk

based on the discussed observations in line with **evolutionary conservatism**

Introduction: the water paradox

Can RNA form in water anyway?

What determines our observed polymerization?

What has computational chemistry and thermodynamics to say about this?

What are the implications of our findings?

Outline

Introduction: the water paradox

Can RNA form in water anyway?

What determines our observed polymerization?

What has computational chemistry and thermodynamics to say about this?

What are the implications of our findings?

water is essential to life

water causes unfavourable reactions with key biomolecules

Water:

- crucial component for running biochemistry
- highly destructive compound in prebiotic chemistry

e.g. nucleic acid synthesis: phosphodiester bonds form in a condensation-dehydration reaction \rightarrow releases water

A product of a reaction is difficult to form when being at the same time the solvent: condensation-dehydration reactions are highly unfavourable in water!

\rightarrow spontaneous formation of nucleic acids is prohibited by water.

Some approaches to overcome the water paradox:

- Using alternative solvents (e.g. formamide)
- get rid of the water via evaporation (wet/dry cycles)
- adding condensing agents (e.g. cyanamide)
- high temperatures (~ 160°C)

Prebiotic plausible?

- → life manages the water problem within a stable environment full of water at physiological temperatures/ pressures
- $\rightarrow\,$ evolution builds on existing pathways

Introduction: the water paradox

Can RNA form abiotically in water anyway?

What determines our observed polymerization?

What has computational chemistry and thermodynamics to say about this?

What are the implications of our findings?

Preliminary considerations

Living cells:

→ contain intracellular aqueous fluid, crowded with large, complex biomolecules

→ water exists mostly as interfacial/ nanoconfined water

Preliminary considerations

nanoconfined water -> different properties compared to bulk state:

- activity
- H-bonding network dynamics
- density
- reactivity
- dielectric constant
- phase diagram of water shifted to gas-like
- quantum state of the protons

•

anomalous behaviour of nanoconfined water

Preliminary considerations

anomalous behaviour of water when being nanoconfined

results from a complex interplay of various

nanofluidic phenomena/ forces

related to e.g.

- surface energy and size of the confining boundaries
- shear
- molecular structure
- electrical double layer
- fluctuations of general order parameter (thermal Casimir effect etc.)

• ..

Preliminary considerations

Living cell

= intracellular fluid crowded with large biomolecules

Materials science

aqueous suspension of concentrated nanoparticles generates **nanofluidic effects on water**

Nanogeochemical environments

- = sediments with pore water;
- = hydrothermal vent fluids with precipitated particles;
- = particle aggregates in water-filled cracks in earths crust

Preliminary considerations

Living cell

= intracellular fluid crowded with large biomolecules

Materials science

aqueous suspension of concentrated nanoparticles generates **nanofluidic effects on water**

Nanogeochemical environments

- = sediments with pore water;
- = hydrothermal vent fluids with precipitated particles;
- = particle aggregates in water-filled cracks in earths crust

Yang et al RSC Adv., 2014,7818

Do abiotic nanofluidic environments within aqueous suspension have the potential of inducing key biochemical reactions?

Example reaction:

Polymerization of nucleotides into RNA

 \rightarrow abiotic synthesis of RNA in water: common goal of prebiotic chemistry

Example system:

Suspension of a mixture of polyaromatic heterocyclic crystal particles (quinacridone) and inorganic particles (graphite)

→ well characterized system in terms of inducing nanofluidic phenomena in aqueous suspensions (A. Eberle, T. Markert, F. Trixler: *JACS* **140**, 1327 (2018)).

Fluorometric poly-A-RNA concentrations

Quantitative PCR after reverse transcription

Gel Electrophoresis

Introduction: the water paradox

Can RNA form abiotically in water anyway?

What determines our observed polymerization?

What has computational chemistry and thermodynamics to say about this?

What are the implications of our findings?

Preliminary considerations

anomalous behaviour of water when being nanoconfined

results from a complex interplay of various

nanofluidic phenomena/ forces

related to e.g.

- surface energy and size of the confining boundaries
- shear
- molecular structure
- electrical double layer
- fluctuations of general order parameter (thermal Casimir effect etc.)

• ••

Organic Solid/Solid Wetting Deposition (OSWD)

\rightarrow Correlation between OSWD and RNA formation?

Organic solid/solid wetting

Organic solid/solid wetting

Revealing the Physicochemical Basis of Organic Solid–Solid Wetting Deposition: Casimir-like Forces, Hydrophobic Collapse, and the Role of the Zeta Potential

Alexander Eberle,^{†,‡} Thomas Markert,[§] and Frank Trixler^{*,†,||}

Organic solid/solid wetting as a probe

Organic solid/solid wetting (OSSW) as a probe

OSSW efficiency as a function of biomolecular species added to aqueous suspension

Fluorometric poly-A-RNA concentrations

Fluorometric poly-A-RNA concentrations

Introduction: the water paradox

Can RNA form abiotically in water anyway?

What determines our observed polymerization?

What has computational chemistry and thermodynamics to say about this?

What are the implications of our findings?

Discussion

Gibbs free energy change: $\Delta G = \Delta H - T\Delta S$

Nucleotide polymerization release water \rightarrow TD barrier: (Δ G > 0)

=> uphill reaction → extremely inefficient to occur spontaneously under ambient conditions

If water activity is very low: $\rightarrow (\Delta S >> 0) \rightarrow (\Delta G < 0)$ (exergonic)

=> by reducing water activity: thermodynamic barrier can be overcome

Temporal nanoconfined water: changes vapour pressure and H-Bond network dynamics: → reduces water activity (gap size, characteristics of confining walls)

Discussion

Exergonic impact of nanoconfinement effects on nucleotide polymerization/ stabilization

- \rightarrow relevant for prebiotic plausibility:
- no non-physiological conditions (drying, alternative solvents, high temperature)
- In line with evolutionary conservatism: nanofluidics both in nanogeochemical and intracellular environments.

Discussion

communications chemistry

ARTICLE

(E) Check for updates

https://doi.org/10.1038/s42004-023-00872-y OPEN

Temporal nanofluid environments induce prebiotic condensation in water

Andrea Greiner de Herrera^{1,2,3}, Thomas Markert¹⁴ & Frank Trixler^{1,3,5}

Introduction: the water paradox

Can RNA form abiotically in water anyway?

What determines our observed polymerization?

What has computational chemistry and thermodynamics to say about this?

What are the implications of our findings?

Implications

Abiotic, temporal nanofluidic confinements...

- allow prebiotic condensation reaction pathways in water under stable, moderate conditions
- emerge in aqueous particle suspensions as geologically ubiquitous and thus prebiotic plausible environments
- are consistent with the principle that evolution builds on existing pathways as living cells also work with temporal nanoconfined water

Acknowledgements

- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Germany
 → molecular biology experiments (Fluorometry, PCR) (A. Greiner de Herrera)
- Institute of Theoretical Chemistry, Ulm University, Germany
 → dynamic force field calculations (T. Markert)

Summary

Don't combat water (cooking, replacing, drying) in aiming to solve the water paradox; dive to the bottom of the nanoscopic waterworld.

